Abstract

Chemical bath deposition is an attractive technique to form single- and multilayered metal oxide/chalcogenide films on electrode surfaces. However, the occurrence of desorption and/or ion-exchange reaction during subsequent chemical bath deposition has so far limited preparation of multilayered metal oxide/chalcogenide films. In this paper, we report a method to prevent desorption and ion-exchange reaction of metal oxide/chalcogenide on electrode surfaces using a polyelectrolyte multilayer during sequential chemical bath deposition. By controlling the ion permeability of the polyelectrolyte multilayer, Cu(2-x)Se film was successfully deposited on the CdS film. The Cu(2-x)Se/CdS film is confirmed by UV-vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and X-ray powder diffractometer. Furthermore, the Cu(2-x)Se/CdS films were investigated as photoinduced charge transfer devices which showed photocurrents of 0.22 mA/cm(2) under illumination (I = 100 mW/cm(2)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.