Abstract

Changes in synaptic structure have been reported following the induction of long-term potentiation (LTP). The structure of synapses during the intermediate maintenance of LTP has yet to be fully characterized in chronically implanted freely moving animals. The present study examined synapses in the middle third of the molecular layer (MML) of the rat dentate gyrus following repeated high frequency tetanization of the perforant path. Synapses from both 1) the ipsilateral inner third of the dentate molecular layer (IML), which was not directly stimulated during the induction of LTP, as well as 2) implanted, nonstimulated animals, served as controls. LTP was induced over a 4-h period, and the animals were sacrificed 24 h after the final stimulation of the LTP group. Ultrastructural quantification included the total number of synapses, synaptic curvature, the presence of synaptic perforations, and the maximum length of the synaptic contact. Although LTP was not associated with an overall increase in synaptic number, there was a significant increase in the proportion of presynaptically concave-shaped synapses. Further, the concave synapses in the LTP tissue were found to be significantly smaller than control concave synapses. There was also a significant increase in the number of perforated concave synapses which exceeded the overall increase in concave synapses, and occurred despite the lack of a general increase in perforated synapses. It was concluded that this specific structural profile, observed at 24 h postinduction, may help support the potentiated response observed at this stage of LTP maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.