Abstract

TokK is a B12 -dependent radical SAM enzyme involved in the biosynthesis of the β-lactam antibiotic asparenomycin A. It can catalyze three methylations on different sp3 -hybridized carbon positions to introduce an isopropyl side chain at the β-lactam ring of pantetheinylated carbapenem. Herein, we report a quantum chemical study of the reaction mechanism of TokK. A stepwise ''push-pull'' radical relay mechanism is proposed for each methylation: a 5'-deoxyadenosine radical first abstracts a hydrogen atom from the substrate in the active site, then methylcobalamin directionally donates a methyl group to the substrate. More importantly, calculations were able to uncover the origin of observed chemoselectivity and stereoselectivity for the first methylation and regioselectivity for the following two methylations. Further detailed distortion/interaction analysis can help to unravel the main factors controlling the selectivities. Our findings of sequential methylations by TokK could have profound implications for studying other B12 -dependent radical SAM enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call