Abstract

Collision-induced dissociation (CID) of [Th,xC,xO]+, x = 3-6, with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). Products are formed exclusively by the loss of CO ligands. Analyses of the kinetic energy-dependent CID product cross sections yield bond dissociation energies (BDEs) of (CO)x-1Th+-CO at 0 K as 1.09 ± 0.05, 0.82 ± 0.07, 0.63 ± 0.05, and 0.70 ± 0.05 eV, respectively. Different structures of [Th,xC,xO]+ were explored using various electronic structure methods, and BDEs for CO ligand loss from precursor [Th,xC,xO]+ complexes were computed. Both experimental and theoretical results corroborate that the structures of [Th,xC,xO]+, x = 3-6, formed experimentally are homoleptic thorium cation carbonyl complexes, Th+(CO)x. The nonmonotonic trend in experimental BDEs is reproduced theoretically, although ambiguities in the spin states of the x = 4-6 complexes (doublet or quartet) remain. BDEs calculated at the coupled cluster with single, double, and perturbative triple excitations (CCSD(T))/cc-pVXZ//B3LYP/cc-PVXZ (X = T and Q) level and a complete basis set (CBS) extrapolation agree reasonably well with the experimental values for all complexes. Thorium oxide ketenylidene carbonyl cations, OTh+CCO(CO)y, y = 1-4, were calculated to be the most stable structures of [Th,xC,xO]+, x = 3-6, respectively; however, these are not observed in our experiment. Potential energy profiles (PEPs) having either quartet or doublet spin calculated at the B3LYP/cc-pVQZ level suggest that the failure to observe OTh+CCO(CO)y, y = 1-4, is the result of a barrier corresponding to the C-C bond formation, making the formation of OTh+CCO(CO)y inaccessible kinetically under the present experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call