Abstract

We constructed an artificial holoprotein as a complex between alpha globin from human adult hemoglobin and the protoporphyrin IX-Zn(II). The prosthetic group is bound in a single conformation to the apoglobin via a coordinative bond between Zn(II) ion and the proximal histidine (His87). The complex is diamagnetic and does not bind either CO nor O2 thus representing a diamagnetic model of deoxygenated alpha chains. In the present paper we report extensive resonance assignment in the proton nuclear magnetic resonance spectrum of the Zn-substituted alpha chains in phosphate buffer pH 5.6. A large number of aromatic and aliphatic side chain spin systems were identified in the two-dimensional homonuclear COSY spectra. Based on the assigned resonances of heme substituent protons and their NOE cross-peaks, we assigned the majority of resonances representing the heme pocket side chains. Using the main-chain-directed assignment strategy, we could establish several continuous patterns of sequential assignment and identify partial or total spin systems for a large number of side chains. The final assignment corresponds to 73% of the amino acids. Analysis of chemical shift of assigned resonances and of nuclear Overhauser enhancement connectivities provides structural information on the global and local tertiary conformation in solution and on the ligand-induced conformational changes. Comparison of observed and calculated ring current shifts enabled us to compare the solution structure with the X-ray crystal structure of alpha subunits in deoxy and carbonmonoxy hemoglobin. The global tertiary structure of unliganded chains is highly similar to both ligand and unliganded counterparts in the crystalline state. On the distal side of the heme pocket. Val62 is significantly closer to the heme center, in agreement with its conformation in the crystallographic structure. In contrast, the position of the proximal histidine (His87) relative to the heme is clearly more closely related to that in the liganded tetramer in the crystalline state. Comparison of the chemical shift values for the resonances in carbon monoxy and Zn(II)-substituted alpha chains indicates that the ligand-induced conformational changes are essentially localized in the heme pocket area and affect proximal side residues more than the distal side ones. Some notable spectral changes are discussed in connection with the crystallographic data and their relevance for the functional mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.