Abstract

In this paper, the industrial hammer peening process is optimized using multi-objective, sequential approximate optimization, which is a mathematics- plus finite element- based algorithm. Since the number of design and objective variables is significant, the global optimization problem is split into two, more manageable multi-objective subproblems. The use of surrogate modelling together with an intensification and diversification strategy for solving the optimization subproblems allows for significant computational cost savings without loss of accuracy. Additionally, we propose a Bayesian inference criterion-based sensitivity approach for "filtering-out" design variables which do not significantly affect objectives variables. Finally, guidelines for selecting appropriate Pareto optima are given using N?1$N-1$ Pareto diagrams, where N is the number of objective variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.