Abstract

At the early stage of drug discovery, many thousands of chem- ical compounds can be synthesized and tested (assayed) for potency (activity) with high throughput screening (HTS). With ever-increasing numbers of compounds to be tested (now often in the neighborhood of 500,000) it remains a challenge to find strategies via sequential design that reduce costs while locating classes of active compounds. Initial screening of a modest number of selected compounds (first- stage) is used to construct a structure-activity relationship (SAR). Based on this model, a second-stage sample is selected, the SAR updated and, if no more sampling is done, the activities of not yet tested compounds are predicted. Instead of stopping, the SAR could be used to determine another stage of sampling after which the SAR is updated and the pro- cess repeated. We use existing data on the potency and chemical structure of 70,223 compounds to investigate various sequential testing schemes. Evidence on two assays supports the conclusion that a rather small number of samples selected according to the proposed scheme can more than triple the rate at which active compounds are identified and also produce SARs effective for identifying chemical structure. A different set of 52,883 com- pounds is used to confirm our findings. One surprising conclusion of the study is that the design of the ini- tial sample stage may be unimportant: random selection or systematic methods based on chemical structures are equally effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.