Abstract

The notion of aggregate signature has been motivated by applications and it enables any user to compress different signatures signed by different signers on different messages into a short signature. Sequential aggregate signature, in turn, is a special kind of aggregate signature that only allows a signer to add his signature into an aggregate signature in sequential order. This latter scheme has applications in diversified settings such as in reducing bandwidth of certificate chains and in secure routing protocols. Lu, Ostrovsky, Sahai, Shacham, and Waters (EUROCRYPT 2006) presented the first sequential aggregate signature scheme in the standard model. The size of their public key, however, is quite large (i.e., the number of group elements is proportional to the security parameter), and therefore, they suggested as an open problem the construction of such a scheme with short keys.In this paper, we propose the first sequential aggregate signature schemes with short public keys (i.e., a constant number of group elements) in prime order (asymmetric) bilinear groups that are secure under static assumptions in the standard model. Furthermore, our schemes employ a constant number of pairing operations per message signing and message verification operation. Technically, we start with a public-key signature scheme based on the recent dual system encryption technique of Lewko and Waters (TCC 2010). This technique cannot directly provide an aggregate signature scheme since, as we observed, additional elements should be published in a public key to support aggregation. Thus, our constructions are careful augmentation techniques for the dual system technique to allow it to support sequential aggregate signature schemes. We also propose a multi-signature scheme with short public parameters in the standard model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.