Abstract

Ribose methylation is one of the most abundant RNA modifications and is found in all domains of life and all major classes of RNA (rRNA, tRNA, and mRNA). Ribose methylations are introduced by stand-alone enzymes or by generic enzymes guided to the target by small RNA guides. Recent years have seen the development of several sequencing-based methods for RNA modifications relying on different principles. In this review, we compare mapping and quantitation studies of ribose methylations from yeast and human culture cells. The emphasis is on ribosomal RNA for which the results can be compared to results from RNA fingerprinting and mass spectrometry. One sequencing approach is consistent with these methods and paints a conservative picture of rRNA modifications. Other approaches detect many more sites. Similar discrepancies are found in measurements of modification stoichiometry. The results are discussed in relation to the more challenging task of mapping ribose methylations in mRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.