Abstract

Serotonin is a key mediator of stress, anxiety, and depression, and novel therapeutic targets within serotonin neurons are needed to combat these disorders. To determine how stress alters the translational profile of serotonin neurons, we sequenced ribosome associated RNA from these neurons after repeated stress in male and female mice. We identified numerous sex- and stress-regulated genes. In particular, Fkbp5 mRNA, which codes for the glucocorticoid receptor co-chaperone protein FKBP51, was consistently upregulated in male and female mice following stress. Pretreatment with a selective FKBP51 inhibitor into the dorsal raphe prior to repeated forced swim stress decreased resulting stress-induced anhedonia. Our results support previous findings linking FKBP51 to stress-related disorders and provide the first evidence suggesting that FKBP51 function may be an important regulatory node integrating circulating stress hormones and serotonergic regulation of stress responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.