Abstract

BackgroundThe fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop.ResultsWe sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection.ConclusionsOur results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.

Highlights

  • The fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop

  • The genome of M. brunnea Using a combination of Roche 454, ABI SOLiD, and Illumina/Solexa GA-II sequencing, the genome of M. brunnea was sequenced to approximately 34-fold coverage, yielding 2,990 contigs and 155 scaffolds from a specialized form M. brunnea f. sp. multigermtubi (Additional file 1)

  • The N50 scaffold length is 33,873 bp from the 4,532,414 Roche 454 reads with Newbler (v2.3)

Read more

Summary

Results

We sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection

Conclusions
Background
Results and Discussion
Experimental Procedures
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.