Abstract

BackgroundA detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression.ResultsmRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions.ConclusionsOur study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10−09 and 1.1 × 10−09) is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence) reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1.

Highlights

  • A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution

  • While the first large-scale expressed sequence tag (EST) (Expressed Sequence Tag) projects based on Sanger sequencing had already revealed that transcriptomes are highly diverse and complex, this has over the last decade been corroborated on an unprecedented scale by massive parallel sequencing (MPS) [6,7,8,9]

  • Transcriptome sequencing has been employed in a large array of plant species to create basic genetic resources and to study gene expression dynamics

Read more

Summary

Introduction

A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. With the development of generation sequencing, a single experiment can simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. Until recently microarrays, based on either cDNA, or in the case of model organisms, oligonucleotides, were the main tool to assess global patterns of gene expression. These microarray studies provided a first characterization of temporal and spatial gene expression patterns in many different organisms, but they had obvious limitations since they were dependent on already available sequence information from the organism of interest. Transcriptome sequencing has been employed in a large array of plant species to create basic genetic resources and to study gene expression dynamics (for example see: [14,15,16,17,18,19,20])

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.