Abstract

BackgroundParatetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of uranoscopid fishes. Its morphological characteristics are ambiguous, and molecular data have never been used to study its phylogenetic relationships, which makes its taxonomic classification controversial. Also, several decades of unsuccessful attempts to resolve the relationships within the Monogenea present a strong indication that morphological datasets may not be robust enough to be used to infer evolutionary histories. As the use of molecular data is currently severely limited by their scarcity, we have sequenced and characterized the complete mitochondrial (mt) genome of P. inermis. To investigate its phylogenetic position, we performed phylogenetic analyses using Bayesian inference and maximum likelihood approaches using concatenated amino acid sequences of all 12 protein-coding genes on a dataset containing all available monogenean mt genomes.ResultsThe circular mt genome of P. inermis (14,654 bp) contains the standard 36 genes: 22 tRNAs, two rRNAs, 12 protein-encoding genes (PCGs; Atp8 is missing) and a major non-coding region (mNCR). All genes are transcribed from the same strand. The A + T content of the whole genome (82.6%), as well as its elements, is the highest reported among the monogeneans thus far. Three tRNA-like cloverleaf structures were found in mNCR. Several results of the phylogenomic analysis are in disagreement with previously proposed relationships: instead of being closely related to the Gyrodactylidea, Tetraonchidea exhibit a phylogenetic affinity with the Dactylogyridea + Capsalidea clade; and the order Capsalidea is neither basal within the subclass Monopisthocotylea, nor groups with the Gyrodactylidea, but instead forms a sister clade with the Dactylogyridea. The mt genome of P. inermis exhibits a unique gene order, with an extensive reorganization of tRNAs. Monogenea exhibit exceptional gene order plasticity within the Neodermata.ConclusionsThis study shows that gene order within monopisthocotylid mt genomes is evolving at uneven rates, which creates misleading evolutionary signals. Furthermore, our results indicate that all previous attempts to resolve the evolutionary history of the Monogenea may have produced at least partially erroneous relationships. This further corroborates the necessity to generate more molecular data for this group of parasitic animals.

Highlights

  • Paratetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of uranoscopid fishes

  • To simplify comparison with previous studies and discussion of our results, we follow the naming system of Boeger & Kritsky [4], with four exceptions: we use order rank for Tetraonchidea, Monogenea instead of Monogenoidea, Monopisthocotylea instead of Polyonchoinea, and Polyopisthocotylea instead of Oligonchoinea

  • Concerning relationships among the orders Dactylogyridea, Tetraonchidea, Capsalidea and Gyrodactylidea (DTCG group ), Bychowsky [1] argued that the ancestors of the Tetraonchidea were morphologically closer to the Gyrodactylidea than to the Dactylogyridea

Read more

Summary

Introduction

Paratetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of uranoscopid fishes. In taxonomic classification presented by Lebedev [2] includes the Tetraonchidea, together with the Dactylogyridea and Capsalidea, into the superorder Dactylogyria, whereas the Gyrodactylidea was elevated to the superorder level (Gyrodactylia) This classification was partly supported by Justine [5], based on spermatology data: sperm pattern four was found in the orders Tetraonchidea and Dactylogyridea, whereas sperm patterns 2a and 2c were found in the Capsalidea and Gyrodactylidea, respectively. The fact that these traits produce incongruent results, and that several decades of research have failed to produce a consensus on the phylogeny of DTCG group, presents a strong indication that morphological datasets may not provide a sufficiently robust method to establish a comprehensive phylogenetic hypothesis for DTCG group and the Monogenea

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.