Abstract

Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods.

Highlights

  • Transposable elements (TE’s) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome

  • Identifying TE insertion sites We developed a method of identifying TE insertion sites, regardless of whether the insertion sites are known or novel

  • We classified individual TE insertions using a nested hierarchy constructed from the information provided by FlyBase [50], with three primary orders at the top level— one order of DNA-based elements, the terminal inverted repeat (TIR) elements, and two orders of RNA retrotransposons, the long-terminal repeat (LTR) elements and non-LTR elements

Read more

Summary

Introduction

Transposable elements (TE’s) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. TE insertions may sometimes confer an adaptive advantage to the host organism [2,3,4,5,6], even performing essential functions, as in the classic example of Het-A elements, which comprise the telomeric DNA of Drosophila. In this case, the transposition machinery is used to regenerate telomeric DNA lost during DNA replication [7,8]. It has become apparent that transposition is repressed by a special class of small RNAs devoted to this purpose [23,24]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call