Abstract
The mixed-model sequencing problem is to sequence different product models launched down an assembly line, so that work overload at the stations induced by direct succession of multiple labour-intensive models is avoided. As a concept of clearing overload situations, especially applied by Western automobile producers, a team of cross-trained utility workers stands by to support the regular workforce. Existing research assumes that regular and utility workers assemble side-by-side in an overload situation, so that the processing speed is doubled and the workpiece can be finished inside a station's boundaries. However, in many real-world assembly lines the application of utility workers is organised completely differently. Whenever it is foreseeable that a work overload will occur in a production cycle, a utility worker takes over to exclusively execute work, whereas the regular worker omits the respective cycle and starts processing the successive workpiece as soon as possible. This study investigates this more realistic sequencing problem and presents a binary linear program along with a complexity proof. Different exact and heuristic solution procedures are then introduced and tested. Additional experiments show that the new model is preferable from an economic point of view whenever utility work causes considerable setup activities, for example walking to the respective station.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.