Abstract

The feasibility of using nanofabricated arrays as electrophoretic chambers for DNA sequencing is investigated. A specific array design, consisting of rows of closely spaced posts, separated by longer open spaces, is proposed. Molecules driven through the array by an electric field get hooked over obstacles at successive rows and their progress through the device is delayed as a consequences. The dependence of the delay time on molecular size is derived. Numerical evaluation indicates that a device of modest dimensions, operating at high fields, can rapidly resolve oligonucleotides containing several hundred bases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.