Abstract

Silicon monoxide (SiO) has attracted considerable interest as anode material for lithium-ion batteries (LIBs). However, their poor initial Coulombic efficiency (ICE) and conductivity limit large-scale applications. Prelithiation and carbon-coating are common and effective strategies in industry for enhancing the electrochemical performance of SiO. However, the involved heat-treatment processes inevitably lead to coarsening of active silicon phases, posing a significant challenge in industrial applications. Herein, the differences in microstructures and electrochemical performances between prelithiated SiO with a pre-coated carbon layer (SiO@C@PLi) and SiO subjected to carbon-coating after prelithiation (SiO@PLi@C) are investigated. A preliminary carbon layer on the surface of SiO before prelithiation is found that can suppress active Si phase coarsening effectively and regulate the post-prelithiation phase content. The strategic optimization of the sequence whereprelithiation and carbon-coating processes of SiO exert a critical influence on its regulation of microstructure and electrochemical performances. As a result, SiO@C@PLi exhibits a higher ICE of 88.0%, better cycling performance and lower electrode expansion than SiO@PLi@C. The pouch-type full-cell tests demonstrate that SiO@C@PLi/Graphite||NCM811 delivers a superior capacity retention of 91% after 500 cycles. This work provides invaluable insights into industrial productions of SiO anodes through optimizing the microstructure of SiO in prelithiation and carbon-coating processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.