Abstract

Phyllanthus amarus Schum. and Thonn., a widely distributed annual medicinal herb has a long history of use in the traditional system of medicine for over 2000 years. However, the lack of genomic data for P. amarus, a non-model organism hinders research at the molecular level. In the present study, high-throughput sequencing technology has been employed to enhance better understanding of this herb and provide comprehensive genomic information for future work. Here P. amarus leaf transcriptome was sequenced using the Illumina Miseq platform. We assembled 85,927 non-redundant (nr) “unitranscript” sequences with an average length of 1548 bp, from 18,060,997 raw reads. Sequence similarity analyses and annotation of these unitranscripts were performed against databases like green plants nr protein database, Gene Ontology (GO), Clusters of Orthologous Groups (COG), PlnTFDB, KEGG databases. As a result, 69,394 GO terms, 583 enzyme codes (EC), 134 KEGG maps, and 59 Transcription Factor (TF) families were generated. Functional and comparative analyses of assembled unitranscripts were also performed with the most closely related species like Populus trichocarpa and Ricinus communis using TRAPID. KEGG analysis showed that a number of assembled unitranscripts were involved in secondary metabolites, mainly phenylpropanoid, flavonoid, terpenoids, alkaloids, and lignan biosynthetic pathways that have significant medicinal attributes. Further, Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values of the identified secondary metabolite pathway genes were determined and Reverse Transcription PCR (RT-PCR) of a few of these genes were performed to validate the de novo assembled leaf transcriptome dataset. In addition 65,273 simple sequence repeats (SSRs) were also identified. To the best of our knowledge, this is the first transcriptomic dataset of P. amarus till date. Our study provides the largest genetic resource that will lead to drug development and pave the way in deciphering various secondary metabolite biosynthetic pathways in P. amarus, especially those conferring the medicinal attributes of this potent herb.

Highlights

  • P. amarus Schum. and Thonn., a member of family Euphorbiaceae is used in the traditional system of medicine like Ayurveda for over the centuries because of its rich medicinal values and ethnomedicinal importance

  • Merging of the assembled transcripts resulted in 85,927 unitranscripts with maximum and minimum read lengths being 13,600 and 200 bp respectively, with an average size of the assembled unitranscripts being 1548 bp which indicated an increased coverage as well as the depth of our sequencing data

  • To facilitate molecular research in P. amarus we characterized the leaf transcriptome since the vast repertoire of secondary metabolites are mainly present in the leaf tissues of this herb

Read more

Summary

Introduction

P. amarus Schum. and Thonn., a member of family Euphorbiaceae is used in the traditional system of medicine like Ayurveda for over the centuries because of its rich medicinal values and ethnomedicinal importance. The wide variety of secondary metabolites, that attribute to these medicinal properties are present mainly in the leaves and include lignans mainly phyllanthin and hypophyllanthin (Chopra et al, 1956; Rao and Bramley, 1971; Somanabandhu et al, 1993) besides nirtetralin, niranthin, diarylbutane, nyrphyllin, and a neolignan, phyllnirurin; geraniin and flavonoids like quercetin, astralgin, quercetrin, isoquercetin, and rutin (Umezawa, 2003; Kassuya et al, 2006; Leite et al, 2006). It contains minor compounds like hydrolysable tannins like phyllanthusiin D (Foo and Wong, 1992), amariin, amarulone (Foo, 1993), amarinic acid (Foo, 1995) and alkaloids like entnorsecurinine, isobubbialine, and epibubbialine (Houghton et al, 1996)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call