Abstract

Pseudosasa japonica f. Akebonosuji H. Okamura is a bamboo species with variable leaf colors, including albino, green, and green-white stripes. To determine whether variation in leaf color is due to mutations in the chloroplast genome, we sequenced the chloroplast genomes of green and albino leaves of P. japonica f. Akebonosuji. The results indicated that the chloroplast genome included 86 protein-coding genes, seven ribosomal RNA genes, and 31 tRNA genes. The similarity of chloroplast genomes for the two leaf types was 99.98%, with variation between genes encoding for trnfM and trnT. We observed that the relative expression patterns of trnfM and trnT were reversed in green and albino leaves. Whether the differential expression of trnfM and trnT is involved in leaf color variation among P. japonica f. Akebonosuji remains unclear.With many bamboo chloroplast genomes available, we aligned the chloroplast genomes of 28 bamboo species, including P. japonica f. Akebonosuji, to analyze polymorphisms. This comparison revealed that noncoding regions possessed more nucleotide polymorphisms than coding regions. Chloroplast genomes and the nuclear gene “granule-bound starch synthase I” (GBSSI) of 28 bamboo species were used to construct evolutionary trees. Both evolutionary trees indicated that P. japonica f. Akebonosuji was clustered into Subtrib. Arundinariinae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call