Abstract
Male-sterile (S) cytoplasm of onion is an alien cytoplasm introgressed into onion in antiquity and is widely used for hybrid seed production. Owing to the biennial generation time of onion, classical crossing takes at least 4 years to classify cytoplasms as S or normal (N) male-fertile. Molecular markers in the organellar DNAs that distinguish N and S cytoplasms are useful to reduce the time required to classify onion cytoplasms. In this research, we completed next-generation sequencing of the chloroplast DNAs of N- and S-cytoplasmic onions; we assembled and annotated the genomes in addition to identifying polymorphisms that distinguish these cytoplasms. The sizes (153 538 and 153 355 base pairs) and GC contents (36.8%) were very similar for the chloroplast DNAs of N and S cytoplasms, respectively, as expected given their close phylogenetic relationship. The size difference was primarily due to small indels in intergenic regions and a deletion in the accD gene of N-cytoplasmic onion. The structures of the onion chloroplast DNAs were similar to those of most land plants with large and small single copy regions separated by inverted repeats. Twenty-eight single nucleotide polymorphisms, two polymorphic restriction-enzyme sites, and one indel distributed across 20 chloroplast genes in the large and small single copy regions were selected and validated using diverse onion populations previously classified as N or S cytoplasmic using restriction fragment length polymorphisms. Although cytoplasmic male sterility is likely associated with the mitochondrial DNA, maternal transmission of the mitochondrial and chloroplast DNAs allows for polymorphisms in either genome to be useful for classifying onion cytoplasms to aid the development of hybrid onion cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.