Abstract

The enzymatic activity of recombinant influenza virus RNA polymerase is strictly dependent on the addition of a template RNA containing 5' and 3' viral sequences. Here we report the analysis of the binding specificity and physical characterization of the complex by using gel shift, modification interference, and density gradient techniques. The 13S complex binds specifically to short synthetic RNAs that mimic the partially double stranded panhandle structures found at the termini of both viral RNA and cRNA. The polymerase will also bind independently to the single-stranded 5' or 3' ends of viral RNA. It binds most strongly to specific sequences within the 5' end but is unable to bind these sequences in the context of a completely double stranded structure. Modification interference analysis identified the short sequence motifs at the 5' ends of the viral RNA and cRNA templates that are critical for binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call