Abstract
CD59 is a recently discovered cell-surface glycoprotein that restricts lysis by homologous complement and has limited sequence similarity to snake venom neurotoxins. This paper describes the first results of a two-dimensional NMR study of CD59 prepared from human urine. Nearly complete 1H-NMR assignments were obtained for the 77 amino acid residues and partial assignments for the N-glycan and the glycosylphosphatidylinositol (GPI) anchor. These results together confirm that the C-terminal residue of the mature protein is Asn 77 and that the urine-derived form retains the nonlipid part of the GPI anchor. The data further indicate that the GPI anchor and possibly the N-glycan are structurally inhomogeneous and suggest that the phospholipid present in the intact GPI anchor was removed by phosphatidylinositol-specific phospholipase-D. The folding topology of the protein was determined from NOE enhancements and slowly exchanging backbone amide protons and consists primarily of five extended strands (denoted beta 1-beta 5 in sequence order), arranged into separate two-stranded (beta 1 and beta 2) and three-stranded (beta 3-beta 5) antiparallel beta-sheets. The same folding topology is found in all of the snake venom neurotoxins whose structures have been determined. The region between the beta 4 and beta 5 strands has helical character, a feature that is not present in the neurotoxins but that is seen in the topologically similar wheat germ agglutinin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protein science : a publication of the Protein Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.