Abstract

Sequence-selective recognition of complex RNAs in live cells could find broad applications in biology, biomedical research, and biotechnology. However, specific recognition of structured RNA is challenging, and generally applicable and effective methods are lacking. Recently, we found that peptide nucleic acids (PNAs) were unusually well-suited ligands for recognition of double-stranded RNAs. Herein, we report that 2-aminopyridine (M) modified PNAs and their conjugates with lysine and arginine tripeptides form strong (Ka = 9.4 to 17 × 107 M−1) and sequence-selective triple helices with RNA hairpins at physiological pH and salt concentration. The affinity of PNA–peptide conjugates for the matched RNA hairpins was unusually high compared to the much lower affinity for DNA hairpins of the same sequence (Ka = 0.05 to 1.1 × 107 M−1). The binding of double-stranded RNA by M-modified PNA–peptide conjugates was a relatively fast process (kon = 2.9 × 104 M−1 sec−1) compared to the notoriously slow triple helix formation by oligodeoxynucleotides (kon ∼ 103 M−1 sec−1). M-modified PNA–peptide conjugates were not cytotoxic and were efficiently delivered in the cytosol of HEK293 cells at 10 µM. Surprisingly, M-modified PNAs without peptide conjugation were also taken up by HEK293 cells, which, to the best of our knowledge, is the first example of heterocyclic base modification that enhances the cellular uptake of PNA. Our results suggest that M-modified PNA–peptide conjugates are promising probes for sequence-selective recognition of double-stranded RNA in live cells and other biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.