Abstract

Single sites within long double-helical DNA molecules can be recognized by a variety of mechanisms. Different strategies have been used to adapt sequence-specific recognition to sequence-specific cleavage of duplex DNA. Any nucleic acid can be converted into an artificial nuclease by the attachment of a cleaving reagent. Alternatively, a sequence-specific ligand can be used to protect a methylase recognition site from methylation. The protected site may then be cleaved selectively by a restriction endonuclease (the so-called 'Achilles heel' cleavage technique). Recent developments in this area have shown that it is possible to cleave chromosomal DNA at single sites within bacterial and eukaryotic genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.