Abstract

We address the question of how fast the available rational torsion on abelian varieties over ℚ increases with dimension. The emphasis will be on the derivation of sequences of torsion divisors on hyperelliptic curves. Work of Hellegouarch and Lozach (and Klein) may be made explicit to provide sequences of curves with rational torsion divisors of orders increasing linearly with respect to genus. The main results in §2) are applications of a new technique which provide sequences of hyperelliptic curves for all torsions in an interval [a g ,a g +b g ]] wherea g is quadratic ing andb g is linear ing. As well as providing an improvement from linear to quadratic, these results provide a wide selection of torsion orders for potential use by those involved in computer integration. We conclude by considering possible techniques for divisors of non-hyperelliptic curves, and for general abelian varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.