Abstract

We now turn from the study of a single holomorphic function to the study of collections of holomorphic functions. In the first section we will see that under the appropriate notion of convergence of a sequence of holomorphic functions, the limit function inherits several properties that the approximating functions have, such as being holomorphic. In the second section we show that the space of holomorphic functions on a domain can be given the structure of a complete metric space. We then apply these ideas and results to obtain, as an illustrative example, a series expansion for the cotangent function. In the fourth section we characterize the compact subsets of the space of holomorphic functions on a domain. This powerful characterization is used in Sect. 7.5, to study approximations of holomorphic functions and, in particular, to prove Runge’s theorem, which describes conditions under which a holomorphic function can be approximated by rational functions with prescribed poles. The characterization will also be used in Chap. 8 to prove the Riemann mapping theorem.KeywordsSingle Holomorphic FunctionCotangent FunctionRiemann Mapping TheoremPowerful CharacterizationMajor LemmasThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.