Abstract

AbstractGiven its well‐ordered continuous π stacking of nucleobases, DNA has been considered as a biomaterial for charge transfer in biosensors. For cathodic photocurrent generation resulting from hole transfer in DNA, sensitivity to DNA structure and base‐pair stacking has been confirmed. However, such information has not been provided for anodic photocurrent generation resulting from excess‐electron transfer in DNA. In the present study, we measured the anodic photocurrent of a DNA‐modified Au electrode. Our results demonstrate long‐distance excess‐electron transfer in DNA, which is dominated by a hopping mechanism, and the photocurrent generation is sequence dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.