Abstract

The local conformations of individual nucleic acid bases in DNA are important components in processes fundamental to gene regulation. Fluorescent nucleic acid base analogues, which can be substituted for natural bases in DNA, can serve as useful spectroscopic probes of average local base conformation and conformational heterogeneity. Here we report excitation-emission peak shift (EES) measurements of the fluorescent guanine (G) analogue 6-methyl isoxanthoptherin (6-MI), both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific substituent for G in various DNA constructs. Changes in the peak positions of the fluorescence spectra as a function of excitation energy indicate that distinct subpopulations of conformational states exist in these samples on time scales longer than the fluorescence lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. We implement a simple two-state model, which includes four vibrationally coupled electronic levels to estimate the free energy change, the free energy of activation, and the equilibrium constant for the proton transfer reaction. These parameters vary in single-stranded and duplex DNA constructs, and also depend on the sequence context of flanking bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is coupled to conformational heterogeneity of the probe base, and can be interpreted to suggest that Watson-Crick base pairing between 6-MI and its complementary cytosine in duplex DNA involves a "low-barrier-hydrogen-bond". These findings may be important in using the 6-MI probe to understand local base conformational fluctuations, which likely play a central role in protein-DNA and ligand-DNA interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.