Abstract

Abstract Weather index insurance (WII) has been a promising innovation that protects smallholder farmers against drought risks and provides resilience against adverse rainfall conditions. However, the uptake of WII has been hampered by high spatial and intraseasonal basis risk. To minimize intraseasonal basis risk, the standard approaches to designing WII based on seasonal cumulative rainfall have been shown to be ineffective in some cases because they do not incorporate different water requirements across each phenological stage of crop growth. One of the challenges in incorporating crop phenology in insurance design is to determine the water requirement in crop growth stages. Borrowing from agronomy, crop science, and agrometeorology, we adopt evapotranspiration methods in determining water requirements for a crop to survive in each stage that can be used as a trigger level for a WII product. Using daily rainfall and evapotranspiration data, we illustrate the use of Monte Carlo risk modeling to price an operational WII and WII-linked credit product. The risk modeling approach that we develop includes incorporation of correlation between rainfall and evapotranspiration indices that can minimize significant intertemporal basis risk in WII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.