Abstract
Transmembrane proteins play a vital role in cell life activities. There are several techniques to determine transmembrane protein structures and X-ray crystallography is the primary methodology. However, due to the special properties of transmembrane proteins, it is still hard to determine their structures by X-ray crystallography technique. To reduce experimental consumption and improve experimental efficiency, it is of great significance to develop computational methods for predicting the crystallization propensity of transmembrane proteins. In this work, we proposed a sequence-based machine learning method, namely Prediction of TransMembrane protein Crystallization propensity (PTMC), to predict the propensity of transmembrane protein crystallization. First, we obtained several general sequence features and the specific encoded features of relative solvent accessibility and hydrophobicity. Second, feature selection was employed to filter out redundant and irrelevant features, and the optimal feature subset is composed of hydrophobicity, amino acid composition and relative solvent accessibility. Finally, we chose extreme gradient boosting by comparing with other several machine learning methods. Comparative results on the independent test set indicate that PTMC outperforms state-of-the-art sequence-based methods in terms of sensitivity, specificity, accuracy, Matthew's Correlation Coefficient (MCC) and Area Under the receiver operating characteristic Curve (AUC). In comparison with two competitors, Bcrystal and TMCrys, PTMC achieves an improvement by 0.132 and 0.179 for sensitivity, 0.014 and 0.127 for specificity, 0.037 and 0.192 for accuracy, 0.128 and 0.362 for MCC, and 0.027 and 0.125 for AUC, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary sciences, computational life sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.