Abstract

Protein-peptide interactions are essential for all cellular processes including DNA repair, replication, gene-expression, and metabolism. As most protein-peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein-peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine-learning method called SPRINT to make Sequence-based prediction of Protein-peptide Residue-level Interactions. SPRINT yields a robust and consistent performance for 10-fold cross validations and independent test. The most important feature is evolution-generated sequence profiles. For the test set (1056 binding and non-binding residues), it yields a Matthews' Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence-based technique shows comparable or more accurate than structure-based methods for peptide-binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.