Abstract

The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. Semisupervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve learning performance, where no human intervention is assumed. In addition, miRNA-binding proteins almost always contain a much smaller number of binding than nonbinding residues, and cost-sensitive learning has been deemed as a good solution to the class imbalance problem. In this work, a novel model is proposed for recognizing miRNA-binding residues in proteins from sequences using a cost-sensitive extension of Laplacian support vector machines (CS-LapSVM) with a hybrid feature. The hybrid feature consists of evolutionary information of the amino acid sequence (position-specific scoring matrices), the conservation information about three biochemical properties (HKM) and mutual interaction propensities in protein-miRNA complex structures. The CS-LapSVM receives good performance with an F1 score of 26.23 ± 2.55% and an AUC value of 0.805 ± 0.020 superior to existing approaches for the recognition of RNA-binding residues. A web server called SARS is built and freely available for academic usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.