Abstract

It is becoming increasingly recognised that disordered proteins may be fuzzy, in that they can exhibit a wide variety of binding modes. In addition to the well-known process of folding upon binding (disorder-to-order transition), many examples are emerging of interacting proteins that remain disordered in their bound states (disorder-to-disorder transitions). Furthermore, disordered proteins may populate ordered and disordered states to different extents depending on their partners (context-dependent binding). Here we assemble three datasets comprising disorder-to-order, context-dependent, and disorder-to-disorder transitions of 828 protein regions represented in 2157 complexes and elucidate the sequence-determinants of the different interaction modes. We found that fuzzy interactions originate from local sequence compositions that promote the sampling of a wide range of different structures. Based on this observation, we developed the FuzPred method (http://protdyn-fuzpred.org) of predicting the binding modes of disordered proteins based on their amino acid sequences, without specifying their partners. We thus illustrate how the amino acid sequences of proteins can encode a wide range of conformational changes upon binding, including transitions from disordered to ordered and from disordered to disordered states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.