Abstract

BackgroundAffinity prediction between molecule and protein is an important step of virtual screening, which is usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to be improved.ResultsThe proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast execution speed, and can be suitable for the screening of large databases.ConclusionWe construct protein and molecular graphs through sequence and SMILES that can effectively reflect their structures. To utilize the detail contact information of protein, graph neural network is used to extract features and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.