Abstract
Couch potato (cpo) has previously been connected to reproductive diapause in several insect species including Drosophila melanogaster, where it has been suggested to provide a link between the insulin signalling pathway and the hormonal control of diapause. In the first part of the study we sequenced nearly 3.6kb of this gene in a northern Drosophila species (Drosophila montana) with a robust photoperiodically determined diapause and found several types of polymorphisms along the sequenced area. We also found variation among five Drosophila virilis group species in the length of the 5th exon of cpo and in the site of the stop codon at the end of this exon. The second part of the study was targeted on a deletion of six amino acids located in the last section of exon 5, which in D. melanogaster, is translated only in one short transcript lacking the following exons. The studied deletion appeared to be extremely rare in the wild D. montana population where it was found, but its frequency rapidly increased during laboratory culture. qPCR analyses showed the expression level of the deletion allele to be significantly downregulated in both the diapausing and non-diapausing females compared to the wild type allele. At the phenotypic level, the deletion and the decreased expression of cpo transcript involving it did not have direct effect on the incidence of female reproductive diapause, but it was associated with a reduction in development time under diapause-inducing conditions. This suggests that while the cpo transcript containing the prolonged version of the 5th exon with a stop codon is clearly associated with fly development time, the exons with RNA domains included in other transcripts of the gene may be more directly related to diapause regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.