Abstract
Recently, sequence level discriminative training methods have been proposed to fine-tune deep neural networks (DNN) after the framelevel cross entropy (CE) training to further improve recognition performance of DNNs. In our previous work, we have proposed a new cluster-based multiple DNNs structure and its parallel training algorithm based on the frame-level cross entropy criterion, which can significantly expedite CE training with multiple GPUs. In this paper, we extend to full sequence training for the multiple DNNs structure for better performance and meanwhile we also consider a partial parallel implementation of sequence training using multiple GPUs for faster training speed. In this work, it is shown that sequence training can be easily extended to multiple DNNs by slightly modifying error signals in output layer. Many implementation steps in sequence training of multiple DNNs can still be parallelized across multiple GPUs for better efficiency. Experiments on the Switchboard task have shown that both frame-level CE training and sequence training of multiple DNNs can lead to massive training speedup with little degradation in recognition performance. Comparing with the state-of-the-art DNN, 4-cluster multiple DNNs model with similar size can achieve more than 7 times faster in CE training and about 1.5 times faster in sequence training when using 4 GPUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.