Abstract
AbstractThe Alexandra Formation, located in the Northwest Territories of Canada, is formed of a Late Devonian (Frasnian) reef system that developed on a gently sloping, epicontinental ramp in the Western Canada Sedimentary Basin. High‐resolution sequence stratigraphic analysis of its deposits delineates two reef complexes that are separated by a Type I sequence boundary. The second reef complex developed on the outer ramp, basinward of the first, after sea‐level fell ≈17 m. Stratigraphic complexity of the second reef complex was a result of its initiation during forced regression, and its development through an entire cycle of sea‐level rise followed by sea‐level fall. Its highstand systems tract was not characterized by high rates of carbonate production or sediment shedding. Rather, these features took place as sea‐level fell, after its highstand systems tract. The sequence stratigraphic framework of this regressive reef system highlights a number of depositional parameters that differ from high‐relief, shelf‐situated reef systems with steep, narrow margins. These have implications for understanding the controls on the development of ramp‐situated reef systems, and the nature of reef systems with gently sloping profiles. This study demonstrates that the development of stromatoporoid reef systems may be far more complex than generally realized, and that high‐resolution sequence stratigraphy may provide the tools for better understanding of complex, often enigmatic, aspects of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.