Abstract

The attributes of a ‘four-systems-tract’ sequence are at times difficult to identify in outcrop-scale carbonate successions. Poor exposure conditions, variable rates of sediment production, erosion and/or superposition of surfaces that are intrinsic to the nature of carbonate systems frequently conceal or remove its physical features. The late Early–Middle Aptian platform carbonates of the western Maestrat Basin (Iberian Chain, Spain) display facies heterogeneity enabling platform, platform-margin and slope geometries to be identified, and provide a case study that shows all the characteristics of a quintessential four systems tract-based sequence. Five differentiated systems tracts belonging to two distinct depositional sequences can be recognized: the Highstand Systems Tract (HST) and Forced Regressive Wedge Systems Tract (FRWST) of Depositional Sequence A; and the Lowstand Prograding Wedge Systems Tract (LPWST), Transgressive Systems Tract (TST) and subsequent return to a highstand stage of sea-level (HST) of Depositional Sequence B. An extensive carbonate platform of rudists and corals stacked in a prograding pattern marks the first HST. The FRWST is constituted by a detached, slightly cross-bedded calcarenite situated at the toe of the slope in a basinal position. The LPWST is characterized by a small carbonate platform of rudists and corals downlapping over the FRWST and onlapping landwards. The TST exhibits platform backstepping and marly sedimentation. Resumed carbonate production in shelf and slope settings characterizes the second HST. A basal surface of forced regression, a subaerial unconformity, a correlative conformity, a transgressive surface and a maximum flooding surface bound these systems tracts, and are well documented and widely mappable across the platform-to-basin transition area analyzed. Moreover, the sedimentary succession studied is made up of four types of parasequence that constitute stratigraphic units deposited within a higher-frequency sea-level cyclicity. Ten lithofacies associations form these basic accretional units. Each facies assemblage can be ascribed to an inferred depositional environment in terms of bathymetry, hydrodynamic conditions and trophic level. The architecture of the carbonate platform systems reflects a flat-topped non-rimmed depositional profile. Furthermore, these carbonate shelves are interpreted as having been formed in low hydrodynamic conditions. The long-term relative fall in sea-level occurred during the uppermost Early Aptian, which subaerially exposed the carbonate platform established during the first HST and resulted in the deposition of the FRWST, is interpreted as one of global significance. Moreover, a possible relationship between this widespread sea-level drop and glacio-eustasy seems plausible, and could be linked to the cooling event proposed in the literature for the late Early Aptian. Because of the important implications in sequence stratigraphy of this study, the sedimentary succession analyzed herein could serve as an analogue for the application of the four-systems-tract sequence stratigraphic methodology to carbonate systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call