Abstract
AbstractThe M1 block is a typically complex fault-block oilfield, whose recovery has reached 30.5% through the twenty years waterflooding development. Remaining oil scatters very widely and the production between layers is in a high degree. However, many problems have been exposed at the same time which hinder improvement of the recovery rate and sustainable development of the reservoir. Hence, it is important to carry out basic geological research and form a comprehensive understanding of reservoir properties. However, few such studies have been conducted in China. In this study, work related to basic geological research was conducted based on high-resolution sequence stratigraphy, seismic interpretation technology and 3D visual geological modeling, and significant results were achieved. Three sequence orders and three types of interfacies in the stratigraphic architecture of M1 block were identified through seismic sections, logging curve characteristics and entropy spectrum analysis. Thirty-two short-term sequence cycles (fifth order), eight mid-term sequence cycles (fourth order) and two long-term sequence cycles (third order) were identified, followed by the establishment of a high-resolution isochronous stratigraphic correlation framework. Finally, a regional 3D geological model was established on the basis of these preliminary studies. The integrated 3D geological model is a valuable tool for reflecting geological bodies accurately, and it can accurately represent and describe reservoir heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.