Abstract

Substitution of BrdU for dT in mammalian DNA alters the rates of DNA cleavage by restriction endonucleases in a manner that can be related to the specificity of cleavage. A formula is proposed that describes inhibitory and stimulatory contributions arising from the substitution of a Br atom for the CH3 group on T. The larger Br atom is postulated to sterically hinder the nuclease from binding to adjacent groups in the DNA cleavage site, while allowing a tighter binding to itself. The inhibition caused by steric hindrance is predicted to vary inversely with distance from the point of cleavage, whereas the stimulation caused by tighter binding is predicted to be independent of distance. The resultant formula gives a good fit to the data obtained for thirteen different restriction nucleases of known specificity. The parameters in the formula appear to be simple functions of ionic strength. This formula can be used to predict the effect of BrdU substitution on any endonuclease whose specificity of cleavage is known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.