Abstract

A shortened form of the self-splicing intervening sequence RNA of Tetrahymena acts as a sequence-specific endoribonuclease. Specificity of cleavage is determined by Watson-Crick base pairing between the active site of the RNA enzyme (ribozyme) and its RNA substrate [Zaug, A. J., Been, M. D., & Cech, T. R. (1986) Nature (London) 324, 429-433]. Surprisingly, single-base changes in the substrate RNA 3 nucleotides preceding the cleavage site, giving a mismatched substrate-ribozyme complex, enhance the rate of cleavage. Mismatched substrates show up to a 100-fold increase in kcat and, in some cases, in kcat/Km. A mismatch introduced by changing a nucleotide in the active site of the ribozyme has a similar effect. Addition of 2.5 M urea or 3.8 M formamide or decreasing the divalent metal ion concentration from 10 to 2 mM reverses the substrate specificity, allowing the ribozyme to discriminate against the mismatched substrate. The effect of urea is to decrease kcat and kcat/Km for cleavage of the mismatched substrate; Km is not significantly affected at 0-2.5 M urea. Thus, progressive destabilization of ribozyme-substrate pairing by mismatches or by addition of a denaturant such as urea first increases the rate of cleavage to an optimum value and then decreases the rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call