Abstract

The thermal unfolding of the copper redox protein azurin was studied in the presence of four different dipeptide-based ionic liquids (ILs) utilizing tetramethylguanidinium as the cation. The four dipeptides have different sequences including the amino acids Ser and Asp: TMG-AspAsp, TMG-SerSer, TMG-SerAsp, and TMG-AspSer. Thermal unfolding curves generated from temperature-dependent fluorescence spectroscopy experiments showed that TMG-AspAsp and TMG-SerSer have minor destabilizing effects on the protein while TMG-AspSer and TMG-SerAsp strongly destabilize azurin. Red-shifted fluorescence signatures in the 25 °C correlate with the observed protein destabilization in the solutions with TMG-AspSer and TMG-SerAsp. These signals could correspond to interactions between the Asp residue in the dipeptide and the azurin Trp residue in the unfolded state. These results, supported by appropriate control experiments, suggest that dipeptide sequence-specific interactions lead to selective protein destabilization and motivate further studies of TMG-dipeptide ILs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.