Abstract

Intrinsically disordered peptides (IDPs) have been found to undergo liquid-liquid phase separation (LLPS) and produce complex coacervates that play numerous regulatory roles in the cell. Recent experimental studies have discovered that LLPS at or near the membrane surface helps in the biomolecular organization during signaling events and can significantly alter the membrane morphology. However, the molecular mechanism and microscopic details of such processes still remain unclear. Here we study the effect of polyampholyte and polyelectrolyte condensation on two different anionic membranes, as they represent a majority of naturally occurring IDPs. The polyampholytes are fifty-residue polymers, made of glutamate(E) and lysine(K) with different charge patterns. The polyelectrolytes are separate chains of E25 and K25. We first calibrate the MARTINI v3.0 force field and then perform long-time-scale coarse-grained molecular dynamics simulations. We find that condensates formed by all the polyampholytes get adsorbed on the membrane. However, the strong polyampholytes (i.e., blocky sequences) can remodel the membranes more prominently than the weaker ones (i.e., scrambled sequences). Condensates formed by the blocky sequences induce a significant negative curvature (∼0.1 nm-1) and local demixing of lipids, whereas those by the scrambled sequences tend to wet the membrane to a greater extent without generating significant curvature or demixing. We perform several microscopic analyses to characterize the nature of the interaction between membranes and these condensates. Our analyses of interaction energetics reveal that membrane remodeling and/or wetting are favored by enhanced interactions between polyampholytes with lipids and the counterions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.