Abstract

Thiazine formation during the conjugation of N‐terminal cysteine peptides to maleimides is an underreported side reaction in the peptide literature. When the conjugation was performed at neutral and basic pH, we observed the thiazine isomer as a significant by‐product. Nuclear magnetic resonance (NMR) spectroscopy confirmed the structure of the six‐membered thiazine and ultra‐high performance liquid chromatography (UHPLC) combined with tandem mass spectrometry (MS/MS) allowed for facile, unambiguous detection due to a unique thiazine mass fragment. Furthermore, substitution of various amino acids adjacent to the N‐terminal cysteine in a tripeptide model system resulted in different rates of thiazine formation, albeit within the same order of magnitude. We also determined that varying the N‐substitution of the maleimide affects the thiazine conversion rate. Altogether, our findings suggest that thiazine rearrangement for N‐terminal cysteine‐maleimide adducts is a general side reaction that is applicable to other peptide or protein systems. Performing the conjugation reaction under acidic conditions or avoiding the use of an N‐terminal cysteine with a free amino group prevents the formation of the thiazine impurity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.