Abstract

A polyamide nucleic acid (PNA) was designed by detaching the deoxyribose phosphate backbone of DNA in a computer model and replacing it with an achiral polyamide backbone. On the basis of this model, oligomers consisting of thymine-linked aminoethylglycyl units were prepared. These oligomers recognize their complementary target in double-stranded DNA by strand displacement. The displacement is made possible by the extraordinarily high stability of the PNA-DNA hybrids. The results show that the backbone of DNA can be replaced by a polyamide, with the resulting oligomer retaining base-specific hybridization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.