Abstract

Supramolecular self-assembling peptide hydrogels are attracting attention. The switching of even one amino acid may lead to differences in structure and functions of peptide hydrogels. Herein, we investigate the effect of substitution of a single amino acid residue on the gelation properties of C13-dipeptide hydrogels. We show that four C13-R1Y (C13-VY, C13-FY, C13-WY, and C13-YY) can form hydrogels with drastically tunable rigidity (the G' values were 5.74, 0.16, 27.74, and 67.90 KPa, respectively). Moreover, C13-WY and C13-YY hydrogels with high stability and excellent mechanical properties formed β-sheet nanofiber cross-linked networks. Furthermore, we applied four hydrogels into encapsulation of lemon essential oil (LEO). The peptide hydrogels had a high encapsulation rate and slowly released the LEO. Importantly, the LEO-loaded hydrogels showed enhanced antibacterial activity than free LEO. Our results clearly demonstrate the significance of side-chain interactions in determining hydrogel properties and their potential application in encapsulation for nutrition agents and hydrophobic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call