Abstract
We introduce a new class of commutative noetherian DG-rings which generalizes the class of regular local rings. These are defined to be local DG-rings (A,m¯) such that the maximal ideal m¯⊆H0(A) can be generated by an A-regular sequence. We call these DG-rings sequence-regular DG-rings, and make a detailed study of them. Using methods of Cohen-Macaulay differential graded algebra, we prove that the Auslander-Buchsbaum-Serre theorem about localization generalizes to this setting. This allows us to define global sequence-regular DG-rings, and to introduce this regularity condition to derived algebraic geometry. It is shown that these DG-rings share many properties of classical regular local rings, and in particular we are able to construct canonical residue DG-fields in this context. Finally, we show that sequence-regular DG-rings are ubiquitous, and in particular, any eventually coconnective derived algebraic variety over a perfect field is generically sequence-regular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.