Abstract
The large acoustic noise of 80-110 dB during magnetic resonance imaging (MRI) scanning harms patients’ comfort and health. The noise can be reduced by hardware modification or active noise control, but these methods are expensive, difficult, or not very effective. In this study, a sequence optimization method is used to mitigate the acoustic noise problem while maintaining image quality. The 4th order polynomial function is applied to design the new quiet pulse sequences, decreasing the gradient slew rate and higher time derivatives of the original trapezoidal lobes. A sound pressure level (SPL) estimation method is proposed to predict the acoustic noise loudness from the gradient and is used for genetic algorithm sequence optimization. The original and quiet gradient recalled echo (GRE) sequences are applied on a 1.5 T MRI scanner. The average SPL is reduced by 18.6 dBA, and the images show small differences and have similar SNR values. This method is also applied for the scouting and shimming GRE sequences in common clinical applications with significant noise reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.