Abstract

Within neurofibrillary tangles and dystrophic neurites of Alzheimer's disease (AD), the cytoskeletal protein tau is abnormally hyperphosphorylated. In the present study, we examined the effect of okadaic acid (OA), a protein phosphatase inhibitor, in rat cultured neurons. Low concentrations of OA induce degeneration of neurites, rounding of cell bodies, detachment from the substratum, and eventual neuronal death. During OA-induced degeneration, SMI-31 immunoreactivity became punctate in neurites at 6 h after OA treatment, and over time, accumulated in cell bodies and dystrophic neurites. Hyperphosphorylation of tau and marked loss of MAP-2-positive dendrites occurred after 6 h of treatment with OA. Thereafter, AT-8 and PHF-1 immunoreactivity accumulated in cell bodies and subsequently appeared in distal axon-like neurites. These results demonstrate that OA treatment induced hyperphosphorylation of tau and preferential dendritic damage, with subsequent accumulation of phosphorylated tau in cell bodies and dystrophic axon-like neurites. OA-induced neurodegeneration may provide a useful model to study AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.