Abstract

The aim of this study was to define the temporal and spatial patterns of apoptosis, necrosis and inflammation within preovulatory ovine follicles. A gonadotrophin surge was induced in pro-oestrous ewes by GnRH, and isolated follicles were hemisected into apical and basal segments at 0, 10, 18 and 22 h (the time of ovulatory stigma development) after GnRH. Ovarian surface epithelial and granulosa cells were isolated and assessed by fluorescence microscopy for membrane phosphatidylserine translocation-annexin V (early-stage apoptosis), oligonucleosomal DNA nick endlabelling (advanced apoptosis), and nuclear propidium iodide incorporation (necrotic membrane disruption). Thecal shells were analysed for interstitial blood cells. Preovulatory follicles were also hemisected and subjected to electrophoretic DNA degradation analysis. Annexin V binding and in situ DNA fragmentation among ovarian surface epithelial and granulosa cells along the follicular apex were high 18 and 22 h after GnRH. Propidium iodide staining of apical ovarian surface and granulosa cells was apparent at 22 h. There was a coincident increase within the apical theca as the time of ovulation approached in extravasated leucocytes (18 and 22 h) and erythrocytes (22 h). Apoptotic DNA laddering and necrotic DNA smears within the follicular apex were evident on agarose gels at 18 and 22 h, respectively. In contrast, ovarian surface epithelium not associated with the ovulation site and the basal follicular wall were largely unafflicted. It is suggested that both modalities of cellular death, apoptosis and necrosis (with acute inflammation and vascular injury), contribute progressively to follicular stigma formation and ovarian rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.